
Evolutionary algorithms

• Simple genetic algorithms

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck

Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to discrete constraint optimization
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good solutions
quickly

don't find exact solutions
can be much faster
can deal with problems that are numerical and not in a

“nice” form (eg., linear)

Examples in Fuzzy Logic
When learning a fuzzy classifier from training data

we need to find:
Parameters of membership functions
Attributes to put in rules

When finding the parameters that maximize the
output of a fuzzy system, we need to find numerical
values

Hill-Climbing

Hill-climbing is arguably the simplest heuristic
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.

Neighborhood Search
Important choice in hill-climbing: which

neighborhoods to consider
Add a small value to each coordinate? Substruct a small

value from each coordinate?

Large Neighborhood Search
Iteratively select a random

subset of variables of
limited size, find an
optimal assignment for
these variables, assuming
the others are fixed
Requires the availability

of an algorithm to solve
the intermediate
problems optimally
(linear programming,
CP, ..)

Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms

Advantages of GAs
Evolution and natural selection has proven to be a

robust method

A “black box” approach that can easily be applied to
many optimization problems

GAs can be easily parallelized and run on multiple
machines

Some definitions
Population: a collection of solutions for the studied

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a

single solution
Gene: part of a chromosome, usually representing a

variable as part of the solution

Some definitions
Encoding: conversion of a solution to its equivalent

representation (chromosome)
Decoding: conversion of a chromosome (genotype)

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a

solution

Generation t

1 0 0 0

0 0 1 1

0 1 1 0

0 1 0 1

0 1 0 1

po
p

u
l a

ti
on

x y

gene

chromosome

individual

solution fitness
(2,0)

(1,1)

(0,3)

(1,2)

(1,1)

4

2

3

3

2

Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children

Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h ∈ P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h ∈ P with the highest Fitness

Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)

Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. User
is free to choose which methods to use for all three
steps.

1
16%

2
23%

3
11%

4
7%

5
19%

6
24%

1
2
3
4
5
6

01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability of winning
 probability of winning depends on fitness

It is also possible to combine tournament selection with
roulette-wheel

Crossover
Exchange parts of chromosome with a crossover

probability (pc is usually about 0.8)
Select crossover points randomly

One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1

N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0

Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask

Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit

10010110
01100010
10100100
10011001
01111101

. . .

. . .

. . .

. . .

10010110
01100010
10100100
10011101
01111001

. . .

. . .

. . .

. . .

SelectionSelection CrossoverCrossover MutationMutation

Current
generation

Next
generation

Elitism

reproduction

Encoding and decoding

Common coding methods

“standard” binary integer coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)

Gray Coding

Aim: binary coding of integers such that integers
x and y for which |x-y|=1 only differ in one bit

Dec Gray Binary
 0 000 000
 1 001 001
 2 011 010
 3 010 011
 4 110 100
 5 111 101
 6 101 110
 7 100 111

Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0 1

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

 10 11 01 00
Codes hence:
000 001 011 010 110 111 101 100

0
1

0
1

00
01

00
01
11
10

000
001
011
010

Gray Coding
Given a “normal” bit representation, how to calculate

the Gray code?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num

Gray Coding
Given a Gray code, how to calculate a “normal” bit

representation?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the “normal” code (as compared to the Gray code) iff the bit
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101

Gray Coding
Gray coding does not avoid that integers far away

from each other can have similar codes
00000=0
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a
one-bit mutation to transform integer x into integer
x+1 or x-1.

Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)

Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)

	FEM 31001 Computational Intelligence
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Advantages of GAs
	Some definitions
	Slide 12
	GA terminology
	Genetic algorithm
	Pseudo code
	Termination criteria
	Reproduction
	Roulette-wheel selection
	Slide 19
	Tournament selection
	Crossover
	N-point crossover
	Uniform crossover
	Mutation
	GA iteration
	Encoding and decoding
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Handling constraints

