Evolutionary algorithms

- Simple genetic algorithms
- Evolutionary Strategies
- Genetic Programming

Partially based on slides by Thomas Bäck

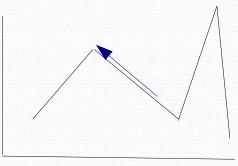
Heuristic Search

- SAT solvers, CP solvers, ILP solvers:
 - find exact solutions to discrete constraint optimization problems
 - can be time consuming
- Heuristic solvers:
 - employ "heuristics": guidelines for finding good solutions quickly
 - don't find exact solutions
 - can be much faster
 - can deal with problems that are numerical and not in a "nice" form (eg., linear)

Examples in Fuzzy Logic

- When learning a fuzzy classifier from training data we need to find:
 - Parameters of membership functions
 - Attributes to put in rules
- When finding the parameters that maximize the output of a fuzzy system, we need to find numerical values

Hill-Climbing



- Hill-climbing is arguably the simplest heuristic algorithm
- 1. *S* = arbitrary candidate solution
- 2. S' = solutions in the neighborhood of S
- 3. **if** best solution in *S*′ is not better than *S* **then** stop
- 4. let *S* be the best solution in *S*'
- 5. go to 2.

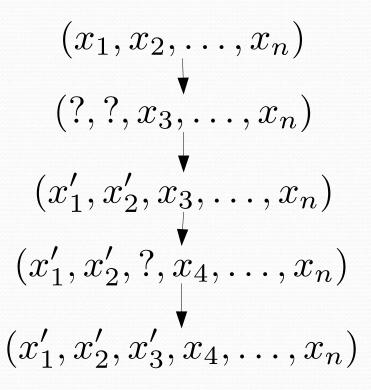
Neighborhood Search

- Important choice in hill-climbing: which neighborhoods to consider
 - Add a small value to each coordinate? Substruct a small value from each coordinate?

$$(x_{1}, x_{2}, \dots, x_{n}) \xrightarrow{(x_{1} + \epsilon, x_{2}, \dots, x_{n})} \xrightarrow{(x_{1} - \epsilon, x_{2}, \dots, x_{n})} \xrightarrow{(x_{1}, x_{2} + \epsilon, \dots, x_{n})} \xrightarrow{(x_{1}, x_{2} - \epsilon, \dots, x_{n})}$$

Large Neighborhood Search

- Iteratively select a random subset of variables of limited size, find an optimal assignment for these variables, assuming the others are fixed
 - Requires the availability of an algorithm to solve the intermediate problems optimally (linear programming, CP, ..)



Other Well-known

- Heuristic Search Strategies
- Simulated annealing
- Tabu search
- Evolutionary algorithms
 - genetic algorithms
 - genetic programming
 - evolutionary strategies
- Artificial ants
- Particle swarms

Advantages of GAs

- Evolution and natural selection has proven to be a robust method
- A "black box" approach that can easily be applied to many optimization problems
- GAs can be easily parallelized and run on multiple machines

Some definitions

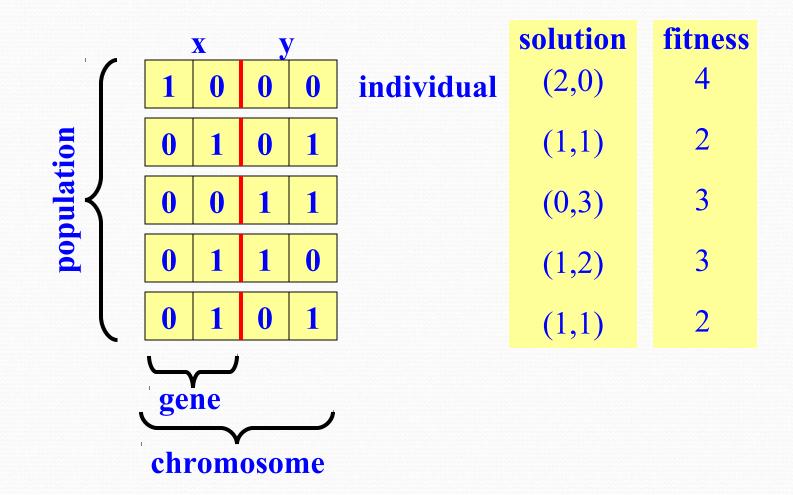
- Population: a collection of solutions for the studied (optimization) problem
- Individual: a single solution in a GA
- Chromosome (genotype): representation for a single solution
- Gene: part of a chromosome, usually representing a variable as part of the solution

Some definitions

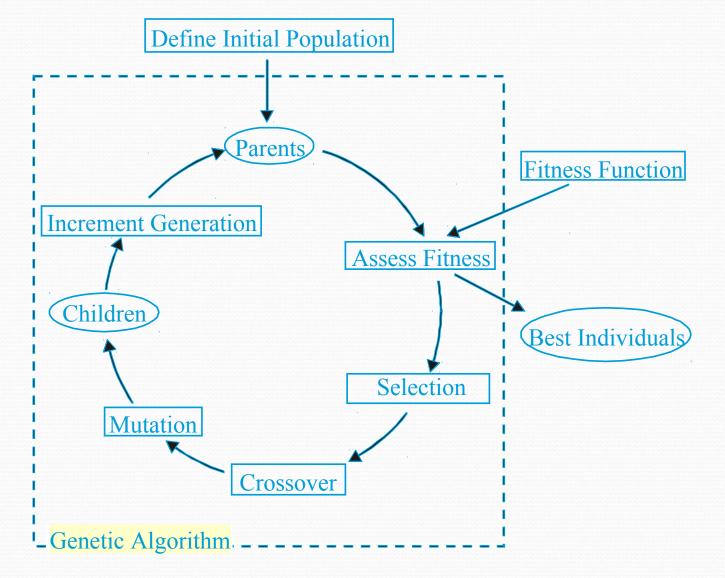
- **Encoding**: conversion of a solution to its equivalent representation (chromosome)
- Decoding: conversion of a chromosome (genotype) to its equivalent solution (phenotype)
- Fitness: scalar value denoting the suitability of a solution

GA terminology

Generation t



Genetic algorithm



Pseudo code

- Initialize population P:
 - E.g. generate random *p* solutions
- Evaluate solutions in *P*:
 - determine for all $h \in P$, Fitness(h)
- While terminate is FALSE
 - Generate new generation P using genetic operators
 - Evaluate solutions in P
- **Return** solution $h \in P$ with the highest Fitness

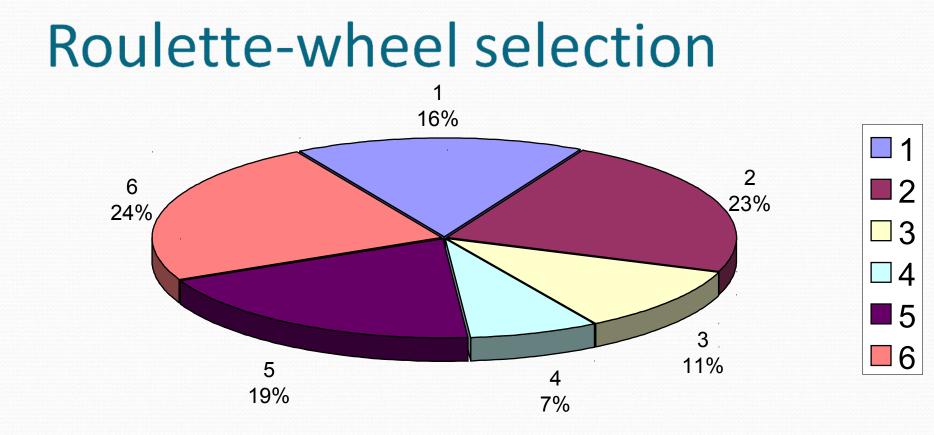
Termination criteria

- Number of generations (restart GA if best solution is not satisfactory)
- Fitness of best individual
- Average fitness of population
- Difference of best fitness (across generations)
- Difference of average fitness (across generations)

Reproduction

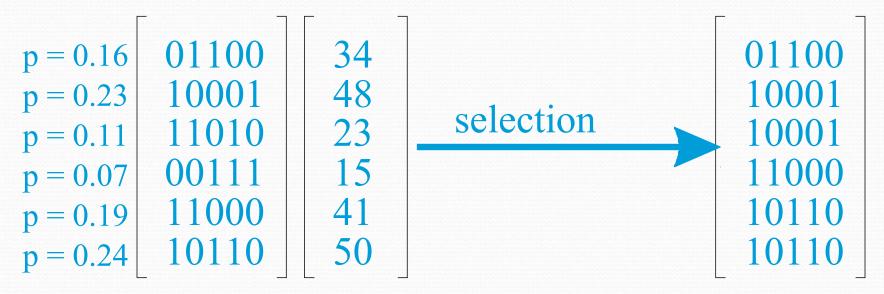
- Three steps:
- Selection
- Crossover
- Mutation

In GAs, the population size is often kept constant. User is free to choose which methods to use for all three steps.



Roulette-wheel selection

individuals fitness



Sum = 211

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00

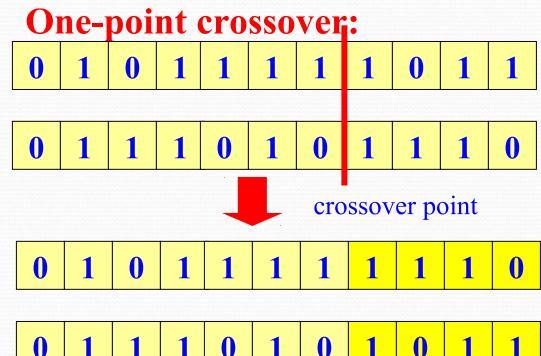
Tournament selection

- Select pairs randomly
- Fitter individual wins
 - deterministic
 - probabilistic
 - constant probability of winning
 - probability of winning depends on fitness

It is also possible to combine tournament selection with roulette-wheel

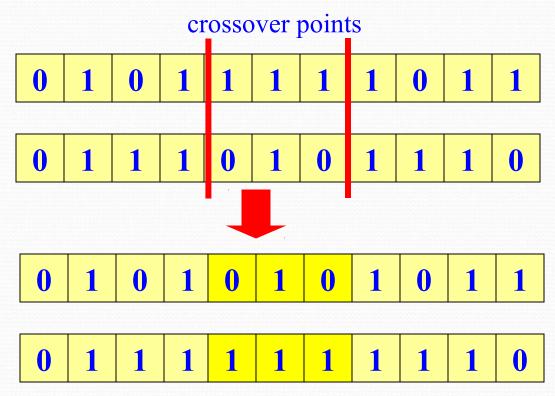
Crossover

- Exchange parts of chromosome with a crossover probability (p_c is usually about 0.8)
- Select crossover points randomly



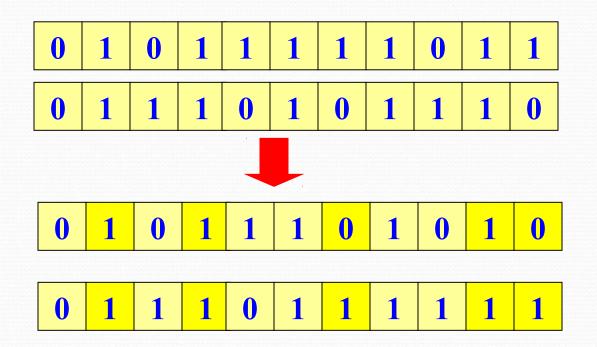
N-point crossover

- Select N points for exchanging parts
- Exchange multiple parts
 Two-point crossover:



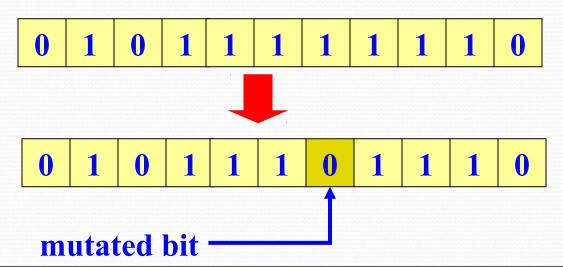
Uniform crossover

Exchange bits using a randomly generated mask
 0
 1
 0
 1
 0
 1
 0
 1
 1
 1

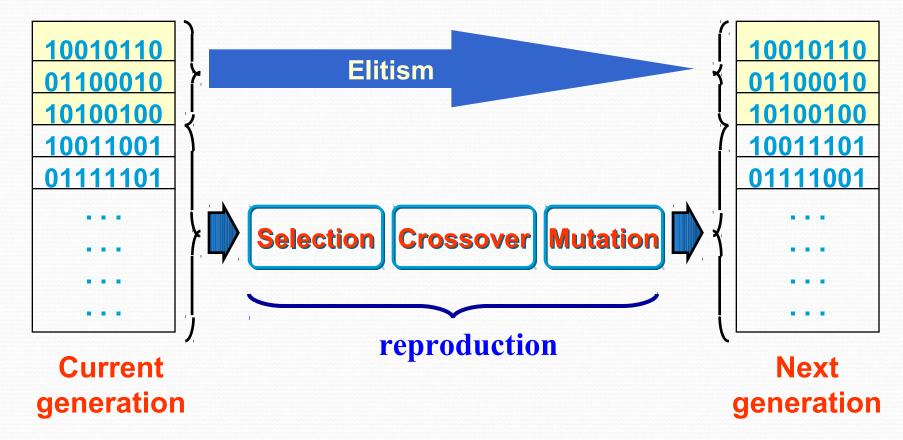


Mutation

- Crossover is used to search the solution space
- Mutation is needed to escape from local optima
- Introduces genetic diversity
- Mutation is rare (p_m is about 0.005)
 Uniform mutation:



GA iteration



Encoding and decoding

- Common coding methods
 - "standard" binary integer coding
 - Gray coding (binary)
 - real valued coding (evolutionary strategies)
 - tree structures (genetic programming)

Aim: binary coding of integers such that integers x and y for which |x-y|=1 only differ in one bit

Dec	Gray	Binary
0	000	000
1	001	001
2	011	010
3	010	011
4	110	100
5	111	101
6	101	110
7	100	111

- Codes for *n*=1: (i.e., integers 0, 1)
 0
- Codes for n=2: (i.e., integers 0, 1, 2, 3)
 Reflected entries for n=0:

1 0 Prefix old entries with o:

<u>0</u>0 <u>0</u>1

Prefix reflected entries with 1:

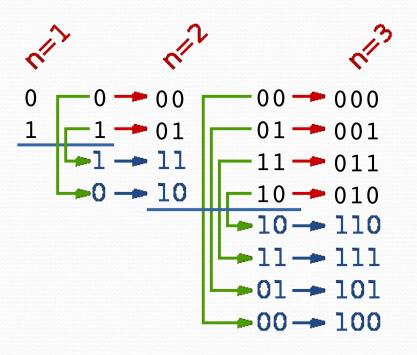
11 10 Codes hence:

00 01 11 10

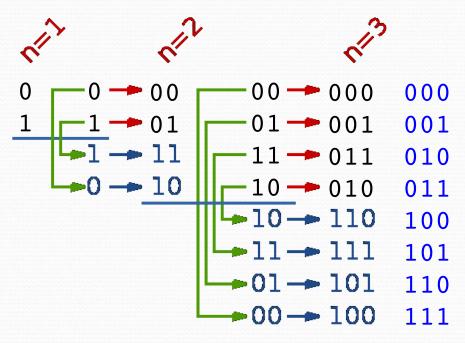
Codes for n=3: (i.e., integers 0, 1, 2, ..., 7)
 Reflected entries for n=2:

 10
 11
 01
 00

 Codes hence:
 000
 001
 011
 010
 111
 101
 100



 Given a "normal" bit representation, how to calculate the Gray code?



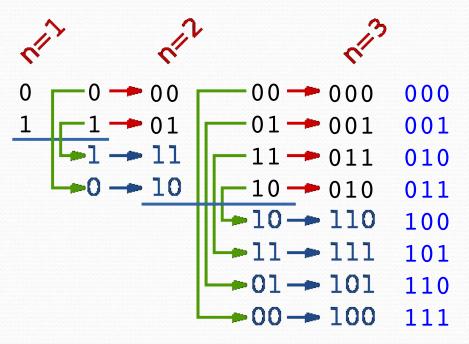
bitstring \rightarrow Gray \rightarrow \rightarrow \rightarrow \rightarrow

A bit flips in the Gray code iff the bit before it has value 1 in the original code.

Source code in Python for calculating Gray code:

def binaryToGray(num):
 return (num >> 1) ^ num

Given a Gray code, how to calculate a "normal" bit representation?



bitstring \rightarrow Gray $10100 \rightarrow 11110$ $10101 \rightarrow 11111$ $10110 \rightarrow 11101$ $11001 \rightarrow 10101$

A bit flips in the "normal" code (as compared to the Gray code) iff the bit before it has value 1 in the "normal" code.

- Gray coding does not avoid that integers far away from each other can have similar codes 00000=0
 - 10000=31
 - → Mutation can still change numbers a lot
- Gray coding only ensures that there always is a one-bit mutation to transform integer x into integer x+1 or x-1.

Constraints

• Examples:

- "A string of numbers should represent a permutation" (1,2,3) is valid; (1,1,3) is not
- "The sum of numbers should not be lower than a threshold"

Possibility 1: fitness function modification

- setting fitness of unfeasible solutions to zero (search may be very inefficient due to unfeasible solutions)
- penalty function (negative terms for violated constraints)
- barrier function (already penalty if "close to" violation)

Constraints

Possibility 2 (preferred method): special encoding

- GA searches always through allowed solutions
- smaller search space
- ad hoc method, may be difficult to find
- Example: permutations (see AI course)