
Evolutionary algorithms

• Simple genetic algorithms 

• Evolutionary Strategies

• Genetic Programming

Partially based on slides by Thomas Bäck



Heuristic Search
SAT solvers, CP solvers, ILP solvers:

find exact solutions to discrete constraint optimization 
problems

can be time consuming
Heuristic solvers:

employ “heuristics”: guidelines for finding good solutions 
quickly

don't find exact solutions
can be much faster
can deal with problems that are numerical and not in a 

“nice” form (eg., linear)



Examples in Fuzzy Logic
When learning a fuzzy classifier from training data 

we need to find:
Parameters of membership functions
Attributes to put in rules

When finding the parameters that maximize the 
output of a fuzzy system, we need to find numerical 
values



Hill-Climbing

Hill-climbing is arguably the simplest heuristic 
algorithm

1. S = arbitrary candidate solution
2. S' = solutions in the neighborhood of S
3. if best solution in S' is not better than S then stop
4. let S be the best solution in S'
5. go to 2.



Neighborhood Search
Important choice in hill-climbing: which 

neighborhoods to consider
Add a small value to each coordinate? Substruct a small 

value from each coordinate?



Large Neighborhood Search
Iteratively select a random 

subset of variables of 
limited size, find an 
optimal assignment for 
these variables, assuming 
the others are fixed
Requires the availability 

of an algorithm to solve 
the intermediate 
problems optimally
(linear programming, 
CP, ..)



Other Well-known
Heuristic Search Strategies
Simulated annealing
Tabu search
Evolutionary algorithms

genetic algorithms
genetic programming
evolutionary strategies

Artificial ants
Particle swarms



Advantages of GAs
Evolution and natural selection has proven to be a 

robust method 

A “black box” approach that can easily be applied to 
many optimization problems

GAs can be easily parallelized and run on multiple 
machines



Some definitions
Population: a collection of solutions for the studied 

(optimization) problem
Individual: a single solution in a GA
Chromosome (genotype): representation for a 

single solution
Gene: part of a chromosome, usually representing a 

variable as part of the solution



Some definitions
Encoding: conversion of a solution to its equivalent 

representation (chromosome)
Decoding: conversion of a chromosome (genotype) 

to its equivalent solution (phenotype)
Fitness: scalar value denoting the suitability of a 

solution
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Genetic Algorithm

Fitness Function

Assess Fitness

Selection

Crossover

Mutation

Increment Generation

Define Initial Population

Parents

Best Individuals
Children



Pseudo code
Initialize population P:

E.g. generate random p solutions

Evaluate solutions in P:
determine for all h ∈ P, Fitness(h)

While terminate is FALSE
Generate new generation P using genetic operators
Evaluate solutions in P

Return solution h ∈ P with the highest Fitness



Termination criteria
Number of generations

(restart GA if best solution is not satisfactory)

Fitness of best individual

Average fitness of population

Difference of best fitness (across generations)

Difference of average fitness (across generations)



Reproduction
Three steps:
Selection
Crossover
Mutation

In GAs, the population size is often kept constant. User 
is free to choose which methods to use for all three 
steps.
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01100
10001
11010
00111
11000
10110

01100
10001
10001
11000
10110
10110

34
48
23
15
41
50

selection

fitnessindividuals

Sum = 211

p = 0.16
p = 0.23
p = 0.11
p = 0.07
p = 0.19
p = 0.24

Cumulative probability: 0.16, 0.39, 0.50, 0.57, 0.76, 1.00



Tournament selection
Select pairs randomly
Fitter individual wins

deterministic
probabilistic

 constant probability of winning
 probability of winning depends on fitness

It is also possible to combine tournament selection with 
roulette-wheel



Crossover
Exchange parts of chromosome with a crossover 

probability (pc is usually about 0.8)
Select crossover points randomly

One-point crossover:
0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover point

0 1 0 1 1 1 1 1 1 1 0

0 1 1 1 0 1 0 1 0 1 1



N-point crossover
Select N points for exchanging parts
Exchange multiple parts
Two-point crossover:

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

crossover points

0 1 0 1 0 1 0 1 0 1 1

0 1 1 1 1 1 1 1 1 1 0



Uniform crossover
Exchange bits using a randomly generated mask

0 1 0 1 1 1 1 1 0 1 1

0 1 1 1 0 1 0 1 1 1 0

0 1 0 1 1 1 0 1 0 1 0

0 1 1 1 0 1 1 1 1 1 1

0 1 0 1 0 0 1 0 0 1 1 mask



Mutation
Crossover is used to search the solution space
Mutation is needed to escape from local optima
Introduces genetic diversity
Mutation is rare (pm is about 0.005)

Uniform mutation:

0 1 0 1 1 1 1 1 1 1 0

0 1 0 1 1 1 0 1 1 1 0

mutated bit
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Encoding and decoding

Common coding methods

“standard” binary integer coding

Gray coding (binary)

real valued coding (evolutionary strategies)

tree structures (genetic programming)



Gray Coding

Aim: binary coding of integers such that integers 
x and y for which |x-y|=1 only differ in one bit

Dec  Gray   Binary
 0   000    000
 1   001    001
 2   011    010
 3   010    011
 4   110    100
 5   111    101
 6   101    110
 7   100    111



Gray Coding
Codes for n=1: (i.e., integers 0, 1)
0  1 

Codes for n=2: (i.e., integers 0, 1, 2, 3)
Reflected entries for n=0:

 1 0
Prefix old entries with 0:
00 01
Prefix reflected entries with 1:

 11 10
Codes hence:
00 01 11 10

Codes for n=3: (i.e., integers 0, 1, 2, …, 7)
Reflected entries for n=2:

   10 11 01 00
Codes hence:
000 001 011 010 110 111 101 100

0
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00
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001
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010



Gray Coding
Given a “normal” bit representation, how to calculate 

the Gray code?

0
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0
1

00
01

00
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10
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010

000
001
010
011
100
101
110
111

A bit flips in the Gray code  iff the bit before it has value 1 in the original code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Source code in Python for calculating Gray code:

def binaryToGray(num):
return (num >> 1) ^ num



Gray Coding
Given a Gray code, how to calculate a “normal” bit 

representation?

0
1

0
1

00
01

00
01
11
10

000
001
011
010

000
001
010
011
100
101
110
111

A bit flips in the “normal” code (as compared to the Gray code)  iff the bit 
before it has value 1 in the “normal” code.

bitstring → Gray
10100 → 11110
10101 → 11111
10110 → 11101
11001 → 10101



Gray Coding
Gray coding does not avoid that integers far away 

from each other can have similar codes 
00000=0 
10000=31

 Mutation can still change numbers a lot→

Gray coding only ensures that there always is a 
one-bit mutation to transform integer x into integer 
x+1 or x-1.



Constraints
Examples:

“A string of numbers should represent a permutation”
(1,2,3) is valid; (1,1,3) is not

“The sum of numbers should not be lower than a 
threshold”

Possibility 1: fitness function modification
setting fitness of unfeasible solutions to zero

(search may be very inefficient due to unfeasible solutions)
penalty function (negative terms for violated constraints)
barrier function (already penalty if “close to” violation)



Constraints

Possibility 2 (preferred method): special encoding
 GA searches always through allowed solutions
 smaller search space
 ad hoc method, may be difficult to find

Example: permutations (see AI course)
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